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The extension of the X-ray constrained (XC) wavefunction approach to open-

shell systems using the unrestricted Hartree–Fock formalism is reported. The

XC method is also extended to include relativistic effects using the scalar

second-order Douglas–Kroll–Hess approach. The relativistic effects on the

charge and spin density on two model compounds containing the copper and

iron atom are reported. The size of the relativistic effects is investigated in real

and reciprocal space; in addition, picture-change effects are investigated and

discussed for the isolated Cu atom. It is found that the relativistic terms lead to

changes in the densities that are much smaller than those from the X-ray

constraint. Nevertheless, the use of the relativistic corrections in the ab initio

model always leads to an improvement in the agreement statistics. An

interesting result of the unrestricted XC technique is the possibility of obtaining

experimentally derived spin densities from X-ray data.

1. Introduction

It is interesting to study transition metal complexes using

X-ray charge density methods because they promise the

possibility of rationalizing novel modes of bonding and cata-

lysis, often involving unpaired electrons in d shells. However,

transition metals are not fully suitable for charge density

analysis because most of the X-ray scattering comes from the

core electrons (Stevens & Coppens, 1976). Traditionally these

core electrons are not interesting from a chemical bonding

point of view. Nevertheless, the importance of core electrons

for charge density measurements demands that they be

treated properly. With growing atomic weight, relativistic

effects start to become significant, and these effects contribute

to the distribution of charge density. Unfortunately the

dominance of the core electrons for the X-ray scattering and

the complexity of bonding in transition metal complexes

makes it difficult to model the valence electron density by

traditional multipole models. Flexible radial functions

are necessary (Figgis et al., 1993) and the additional

flexibility requires a data quality that may not always be

available.

The X-ray constrained (XC) wavefunction approach offers

a solution to the difficulties of modelling transition metal

complexes. The idea of the approach is to constrain an ab initio

isolated molecule wavefunction to reproduce the structure

factors from the experiment (Jayatilaka, 1998; Jayatilaka &

Grimwood, 2001; Grimwood & Jayatilaka, 2001; Grimwood et

al., 2003). In this way for transition metal systems the core

electrons can be modelled properly (with the appropriate

choice of Hamiltonian), thus allowing the maximum amount

of information on the valence charge density to be extracted

from the X-ray data.

This paper describes the extension of the XC wavefunction

approach to open-shell systems at the unrestricted level

(Whitton, 2004). Importantly, this extension allows the spin

density to be derived (according to the usual rules of quantum

mechanics) from the XC wavefunction. In other words, the

spin density is derived indirectly from the charge density

measurements and the XC wavefunction model. In addition,

the XC method is extended to include relativistic effects which

are important to core electrons of heavy-atom systems. Apart

from an improvement of the model for the core electrons,

another reason for introducing relativistic effects is the moti-

vation to quantify the extent of relativity recovered by the

X-ray constraint. From the several quasi-relativistic

Hamiltonians (van Lenthe et al., 1993, 1994; Barysz & Sadlej,

2001; Dyall & van Lenthe, 1999; Ilias & Saue, 2006) the scalar

second-order Douglas–Kroll–Hess (DKH2) Hamiltonian

(Hess, 1985; Wolf et al., 2002a,b, 2004) has been adopted. The

general advantage of the scalar DKH2 Hamiltonian is that it

can be easily implemented in the non-relativistic quantum

chemistry codes. Moreover, systematic improvement beyond

the second order is possible (Nakajima & Hirao, 2000; Reiher

& Wolf, 2004a,b).

The disadvantage of the DKH approach is that there is a

picture change present in the wavefunction. It must be taken

into account when molecular properties, electron densities and

structure factors are calculated. The so-called picture-change

effect (PCE) in electron densities has been addressed by



several authors (Eickerling et al., 2007; Reiher, 2007; van

Wüllen & Michauk, 2005; Mastarlez et al., 2008), but to our

knowledge not in terms of the structure factors which are

important for the XC method. Therefore in this paper we also

examine the PCE in the atomic scattering factor.

The arrangement of this paper is as follows. First we provide

the theoretical background for the XC unrestricted Hartree–

Fock (UHF) method, XC–UHF spin densities, the DKH

method and the PCE. After some computational details the

PCE is investigated in detail for the copper atom, followed by

an investigation of relativistic effects in compounds containing

3d elements (iron and copper). The first compound under

study is [Fe(salpet)Cl] (Šalitroš et al., 2009), shown in

Fig. 1(a), where salpet is the abbreviation for the

OC6H4CHN(R1)NH(R2)NCHC6H4O ligand, with R1 =

CH2CH2CH2 and R2 = CH2CH2. The second model

compound, [CuL2] (Boča et al., 1996), shown in Fig. 1(b),

contains the chelate ligand L = N[C(NH)–OCH3]2 . Both

compounds are studied with and without the X-ray constraint.

Agreement statistics, the relativistic and XC effects to the total

energy of the compounds, and plots of electron and spin

density are displayed. Conclusions and an outlook are given in

the final section.

2. Theoretical background

2.1. XC-UHF approach

The XC wavefunction is a compromise between the wave-

function with lowest energy E and the wavefunction with best

agreement �2 between the experimental and calculated

structure factors. For the case of a UHF wavefunction we

extended the usual restricted approach by minimizing the

Lagrange functional

L c�; c�; """�; """�; �
� �

¼

E c�; c�
� �

� Tr c�ð ÞþS c� � 1
� �

"""� � Tr c�
� �þ

S c� � 1
h i

"""�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X-ray constraint

ð1Þ

with respect to the � and � molecular orbital coefficients c�

and c�, respectively. Here E is the UHF energy, S is the overlap

matrix in the chosen basis set and """� and """� are the usual

Lagrange multipliers, which introduce the molecular orbital

(MO) orthonormality condition into the UHF equations. � is

the desired error of the �2 value; �2 is the agreement statistic

through which the experimental X-ray data are introduced,

�2 ¼
1

Nr � Np

XNr

j

Fj � FX
j

� �2

�2
j

: ð2Þ

Here Nr is the number of measured reflections and Np is the

number of adjustable fitting parameters (normally equal to 1

for parameter �), and �j is the experimental error associated

with the measured structure factor Fj . FX
j is the predicted

structure-factor magnitude from the model wavefunction,

FX
j ¼ �F

C
j ; ð3Þ

where � is an overall scale factor which adjusts the calculated

structure-factor magnitude F C
j to the scale used in the

experiment. It may also include an angle-dependent extinction

correction (not used in this paper).

The derivatives of the Lagrange functional (1) with respect

to c� and c� lead to the XC-UHF equations,

~FF
�
c� ¼ S c�"""�;

~FF
�
c� ¼ S c�"""�;

ð4Þ

where ~FF
�

and ~FF
�

are the modified UHF matrices given by

~FF
�
¼ F� � �C;

~FF
�
¼ F� � �C;

ð5Þ

and where F� and F� are the usual UHF matrices (Szabo &

Ostlund, 1989). The constraint matrix C is given by
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Figure 1
Structures of the studied compounds [Fe(salpet)Cl] (a) and [CuL2] (b).
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The Ij matrix contains the Fourier-transformed basis function

pairs g�ðrÞg	ðrÞ which have been summed over all symmetry-

related molecules centred at positions rm in the unit cell, and

being thermally averaged by multiplication with an appro-

priate Debye–Waller factor,

I�	;j ¼
PNm

m¼1

exp 2
iq j � rm

� �
T�	

R
g�	ðrÞg�ðrÞ exp iRT

mq j � r
� �

dr:

ð7Þ

The Ij matrix is independent of molecular coefficients. RT
m is a

rotation matrix generating the mth symmetry-equivalent

molecule from the first one; rm is the position of the origin of

the mth symmetry-equivalent molecule in the unit cell, T�	 is

the Debye–Waller factor assigned to the basis function pair

ð�	Þ and qj is the scattering vector for the jth reflection

(Jayatilaka, 1998; Jayatilaka & Grimwood, 2001; Grimwood et

al., 2003). A Cartesian axis system has been used. The XC-

UHF equations (4) are solved in the usual self-consistent way.

2.2. XC-UHF spin density

One of the advantages of the XC wavefunction approach is

that, once the XC wavefunction has been obtained, derived

properties can easily be obtained from it according to the

standard rules of quantum mechanics (normally these prop-

erties will be obtained as expectation values of the wave-

function). For example, familiar properties directly related to

the electron density, such as atomic charges and electrostatic

potentials, can be obtained (Grimwood & Jayatilaka, 2001).

Even more unusual properties such as the Fermi hole mobility

function, kinetic energy densities, electron localization func-

tions (Jayatilaka & Grimwood, 2004), refractive indices or

NLO response properties (Whitten et al., 2006; Jayatilaka et

al., 2009) can be derived from the XC wavefunction as well. It

is not possible to obtain these more unusual properties from a

multipole model of the electron density: some kind of

quantum mechanical or wavefunction-based model is needed.

(It is worth pointing out that regions of negative electron

density cannot occur in the XC approach, whereas such

regions are not unusual in a standard multipole approach.)

It is important to realize that the more unusual derived

properties by the XC approach are not measured directly in

the X-ray experiment; experiment only yields structure-factor

magnitudes for the thermally smeared electron density.

Rather, these properties are obtained from the model wave-

function and/or electron density fitted to these experimentally

determined structure-factor magnitudes. The possibility of

deriving any of these properties from the X-ray data ulti-

mately rests with the fact that the electron density contains

enough information within itself to provide this information

(Hohenberg & Kohn, 1964; Jayatilaka & Grimwood, 2001).

The reliability of any XC-derived property must be tested on a

case-by-case basis, as must the effect of the X-ray data on that

property.

In the present case, for open-shell systems, it is straight-

forward to obtain an experimentally derived unpaired elec-

tron density (spin density) from the XC wavefunction. The

unpaired electron density is defined as

�s ¼ �� � ��: ð8Þ

The alpha ð��Þ and beta ð��Þ densities are obtained from

�� ¼
P
�;	

D�
�	g�ðrÞg	ðrÞ; ð9Þ

�� ¼
P
�;	

D�
�	g�ðrÞg	ðrÞ; ð10Þ

where g�ðrÞ and g	ðrÞ are the atomic orbital basis functions

and D� and D� are the alpha and beta density matrices,

respectively, given by

D�
�	 ¼

Pn�
i

c��i� c�i	; ð11Þ

D�
�	 ¼

Pn�
i

c
��
i� c

�
i	; ð12Þ

with c�i�, c�i	, c
�
i� and c

�
i	 being the MO coefficients. The integral

of the spin density gives the number of unpaired electrons,

n� � n� ¼
R
�sðrÞ dr: ð13Þ

It is our goal to present UHF spin densities defined by (8) and

to test the effect of the X-ray constraint on them. We do not

intend in this paper to validate the results with independent

measurements; that will be for future work.

The UHF wavefunctions used in this paper may not be ideal

for the production of spin densities. One reason often cited is

that single-determinant UHF wavefunctions are not eigen-

functions of the total spin operator ŜS 2 (Szabo & Ostlund,

1989); this is because the wavefunction of a given multiplicity

gains contributions from states of higher multiplicity (Szabo &

Ostlund, 1989). The exact wavefunction is known to be an

eigenfunction of ŜS 2 when effects of spin–orbit coupling are

ignored. Because of this, so-called spin contamination may be

the result. The spin contamination can be removed by using a

restricted open-shell approach, i.e. by using the same mole-

cular orbitals for alpha and beta spin (Cassam-Chenaı̈ &

Chandler, 1993), or else it can be removed by applying a

constraint to remove the spin contamination (Andrews et al.,

1991). Another feature of the UHF method is the presence of

regions of negative spin density; these do not occur in single-

determinant wavefunctions which are eigenfunctions of ŜS 2.

Although use of different spatial orbitals for the alpha and

beta molecular orbitals on the one hand introduces regions of

negative spin density and spin contamination, on the other the

UHF approach leads to a lower-energy wavefunction, i.e. leads

to a wavefunction with better overlap with the exact wave-

function.

If further the UHF theory is regarded as a branch of the

density functional theory (Parr & Yang, 1989), then it appears

theoretically more acceptable to use an unrestricted approach

than a restricted one (Pople et al., 1995). For example, it has

already been shown that, at the level of the unrestricted
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density functional theory (UDFT), quite reasonable spin

densities are obtained (Aebersold et al., 1998; Aronica et al.,

2007) although the UDFT method appears less sensitive to

spin contamination. Because of the uncertainty surrounding

the role of spin contamination, and the relative simplicity of

the UHF approach, we have pursued it here in this paper, but

its limitations must be kept in mind.

2.3. The DKH Hamiltonian

The scalar DKH2 (Hess, 1985; Wolf et al., 2002a,b, 2004;

Reiher & Wolf, 2004a,b) is nowadays a widely used approx-

imation to the Dirac–Coulomb Hamiltonian (DCH)

(Schwerdtfeger, 2002; Dyall & Faegri, 2007). Therefore to

understand the DKH approach we start with the DCH. The

one-electron DCH is given by

ĥhDCH ¼
V cr � p̂p

cr � p̂p V � 2mc2

� 	
; ð14Þ

where c is the speed of light, p̂p is the momentum operator, m is

the electron rest mass and V is the potential energy of the

electron–nucleus Coulomb interaction. The term mc2 has been

subtracted from the DCH within (14) to align it with the non-

relativistic energy scale. r is the vector of Pauli’s spin matrices,

rx ¼

�
0 1

1 0

	
; ry ¼

�
0 �i

i 0

	
; rz ¼

�
1 0

0 �1

	
: ð15Þ

Unlike the non-relativistic (NR) Hamiltonian, the DCH is a

four by four matrix which explicitly treats spin, but unfortu-

nately introduces besides the positive energy also the

troublesome negative energy states. One of the major

computational demands of the calculations at the DCH level is

due to the presence of the additional degree of freedom of

negative energy states.

The essential idea behind the DKH Hamiltonian is the

block diagonalization of the DCH using a unitary transfor-

mation U to decouple the positive and negative energy states,

ĤHdecoupled ¼ UĥhDUþ ¼
hþ 0

0 h�

� 	
; ð16Þ

where the hþ block corresponds to a two-component Hamil-

tonian having only positive energy eigenstates and is of

primary interest for chemistry. It is used in place of the usual

one-electron NR Hamiltonian. The h� block of the negative

branch of energy spectra in the decoupled Hamiltonian in (16)

is simply ignored (Reiher, 2006). The two-component

Hamiltonian hþ can be split into spin-free and spin-dependent

terms (Hess, 1985; Wolf et al., 2002a,b, 2004). Retaining only

the spin-free terms of hþ leads to the one-component or scalar

or spin-free DKH Hamiltonian.

The unitary matrix U has no closed formulation in the case

of the DKH approach and is formed as a product of a series of

unitary matrices Ui ,

U ¼ . . . U2U1U0: ð17Þ

The zero-order transformation U0 in (17) is the free particle

Foldy Wouthuysen (fpFW) transformation (Foldy &

Wouthuysen, 1950). This is followed by the Douglas–Kroll

(DK) transformations Ui (i = 1, 2, . . . ) (Douglas & Kroll,

1974). In the case of the DKH2 Hamiltonian only the fpFW U0

and DK first-order U1 transformations are retained.

The fpFW transformation U0 actually introduces operators

which are non-local in coordinate space but which are easily

evaluated in the momentum space representation (Hess,

1985). The basic idea of how to implement the DK Hamilto-

nian into existing quantum chemistry codes, using the ordinary

Gaussian basis sets in Cartesian coordinate space, has come

from Hess and co-workers (Buenker et al., 1984; Hess, 1985),

and we refer the reader to the literature for further details on

the implementation (Wolf et al., 2002a,b, 2004; Reiher, 2006).

One minor but crucial detail needs to be highlighted, namely

that the primitive uncontracted Gaussian basis is used to

represent the momentum eigenfunctions in the expansion of

the resolution of the identity; for example, equation (A6) in

Wolf et al. (2002b), which is used repeatedly in the DKH

method.

2.4. Picture-change effect

The transition from the DCH to the decoupled DKH

Hamiltonian is associated with a change in the wavefunction

of the systems (Wolf & Reiher, 2006a,b),

� ĥhD �j
���D E

¼ � UþUĥhDUþU �j
���D E

¼ U� UĥhDUþ U�j
���D E

¼ ~�� ĤHdecoupled
~��
�����D E

; ð18Þ

where

~�� ¼ U�: ð19Þ

This change of wavefunction is known as the picture change. It

should be noted that the wavefunction � is associated with ĥhD

while ~�� is associated with the modified operator ĤHdecoupled =

UĥhDUþ. Likewise, if an operator X̂X is used with � then a

modified operator UX̂XUþ should be used with ~��. Unfortu-

nately, it is often the case that ~�� is used with the unmodified

operator X̂X, which leads to an error in the expectation value of

operator X̂X, denoted as the picture-change effect (PCE). The

PCE in the expectation value of operator X̂X (Wolf & Reiher,

2006a,b; Barysz & Sadlej, 2001) can be given as the difference

PCEðXÞ ¼ ~�� UX̂XUþ
��� ��� ~��

D E
� ~�� X̂X

��� ��� ~��
D E

: ð20Þ

The PCE is significant for properties related to the electrons

localized in the nuclear region (i.e. electron density), which is

the high energetic part in the atoms (Mastarlez et al., 2008).

Properties like electric field gradient tensors (Barone et al.,

2008) or hyperfine coupling (Malkin et al., 2002, 2004) have to

be PCE corrected. On the other hand, the electrons in the

valence region, i.e. electron density (Eickerling et al., 2007;

Reiher, 2007; van Wüllen & Michauk, 2005; Mastarlez et al.,

2008), and properties which presumably depend on the

valence region electrons (bonding electron density) seem to

be much less effected by the PCE. The calculations of dipole

Acta Cryst. (2010). A66, 78–92 Martin Hudák et al. � Hartree–Fock and Douglas–Kroll–Hess wavefunctions 81

research papers



moments and polarizabilities (Kellö & Sadlej, 1990, 1995a,b;

Kellö et al., 1996; Norman et al., 2002) have not proved to be

significantly influenced by the PCE.

3. Computational details

Here we present details on the relativistic and non-relativistic

calculations of the studied compounds [Fe(salpet)Cl] and

[CuL2] and the isolated copper atom ([Ar]3d10 4s1); the

compounds are shown in Figs. 1(a) and 1(b). The first octa-

hedral complex denoted [Fe(salpet)Cl] (Šalitroš et al., 2009)

contains the Fe(III) atom surrounded by a pentadentate

ligand salpet and Cl atom. The whole molecule [Fe(salpet)Cl]

comprises the asymmetric unit of the crystal, where salpet is

the abbreviation for the OC6H4CHN(R1)NH(R2)NCHC6H4O

ligand with R1 = CH2CH2CH2 and R2 = CH2CH2 . The second

model compound under study was the bis[bis(methoxy-

carbimido)aminato]copper(II) complex (Boča et al., 1996),

abbreviated as [CuL2] with the chelate ligand L = N[C(NH)-

OCH3]2 . The asymmetric unit is comprised of one of the

chelate ligands L and the copper atom. The whole molecule

[CuL2] is produced from the asymmetric unit by an inversion

symmetry operation. The labelling of the atoms in Fig. 1 is

used within the coming sections. The visualization plane of the

two-dimensional densities is defined in the case of [CuL2] by

the copper and N(2), N(7) nitrogen atoms, and in the case of

the [Fe(salpet)Cl] compound by the plane defined by the Fe,

O(23) and N(20) atoms.

3.1. X-ray data

Details on the X-ray data of the studied compounds are

collected in Table 1. The SHELX97 package (Sheldrick, 2008)

was used to perform the refinements of the studied systems.

The R factor and the weighted R factor in Table 1 were

obtained from the SHELX97 program (Sheldrick, 2008).

Anisotropic atom displacement parameters (ADPs) were used

for all non-hydrogen elements. The experimental data were

not corrected for secondary extinction. The experimental

error �j which is present within the �2 value in equation (2) is

obtained at the experimental data reduction step. The back-

ground intensity (signal/noise) is taken into account in �j; the

main contribution is obtained by calculating the deviation of

redundant measurements of a given reflection from their mean

value.

3.2. Spin states of the compounds

The central iron(III) in this compound has two possible spin

states (multiplicities), namely a low (doublet) and a high

(sextet) spin state. An experimental study of Mössbauer

spectra (Šalitroš et al., 2009) has shown that the high spin state

is the appropriate state in the case of this compound. A UHF/

6-31G* calculation unambiguously yielded the lower energy

for the high spin state by 104 mhartree (2.84 eV; 245 kJ mol�1)

compared with the doublet. The spin state of copper(II) in

[CuL2] is a doublet.

3.3. Basis sets

In the case of the [Fe(salpet)Cl] compound the cc-pVTZ

basis set (Balabanov & Peterson, 2005, 2006) was used for the

Fe atom at the NR level. At the unrestricted DKH2 (UDKH2)

level the DK recontracted cc-pVTZ-DK basis set (Balabanov

& Peterson, 2005, 2006) was employed. The cc-pVDZ basis set

was used for the lighter elements Cl, O, N, C at the NR level

(Dunning, 1989; Woon & Dunning, 1993). At the UDKH2

level the recontracted cc-pVDZ-DK (Peterson et al., 2007)

basis set was used. The H atoms were treated in the 6-31G

basis set (Hehre et al., 1972) at both the NR and UDKH2 level.

In the case of the [CuL2] compound the cc-pVDZ basis set

(Balabanov & Peterson, 2005, 2006) was used for the Cu atom

at the NR level. At the UDKH2 level the cc-pVDZ-DK

(Balabanov & Peterson, 2005, 2006) basis set was used. The

6-31G* and 6-31G basis sets (Hehre et al., 1972) were chosen

for the remaining atoms (C, N, O and H) of the [CuL2]

complex.

The calculations of the free Cu atom were performed using

an uncontracted (primitive) cc-pVDZ basis set (Balabanov &

Peterson, 2005, 2006) enlarged by two s and one p high-

exponent Gaussians using an even-tempered series.

3.4. XC calculations

The X-ray constrained relativistic (XC-UDKH2) and X-ray

constrained non-relativistic (XC-UHF) calculations were

performed with successively larger values of �, by 0.05, for

both compounds. The initial guess for the molecular orbital at

� = 0.00 was taken from the promolecule Fock matrix. �(max)

for [Fe(salpet)Cl] was 0.6; for [CuL2] it was 0.4. �(max) was

chosen so that the change in the weighted R factor was less

than 0.04% for both compounds. In the coming sections any

results denoted as XC mean a �(max) XC calculation. The

structure factors used in the XC-UDKH2 calculations were
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Table 1
Details of the studied compounds [Fe(salpet)Cl] and [CuL2] obtained
from the X-ray experiment and the refinement process.

[Fe(salpet)Cl] [CuL2]

Composition C19H21N3O3FeCl C8H16CuN6O4

Formula weight 414.687 323.90
Crystal system Monoclinic Monoclinic
Space group P21/c P21/n
Cell parameters

a (Å) 11.048 (9) 9.8826 (6)
b (Å) 12.020 (1) 5.7121 (3)
c (Å) 14.263 (1) 11.4037 (8)
� (�) 108.34 (7) 98.893 (5)

V (Å3) 1797.8 636.00 (7)
Z 4 2
Density, Dc (g cm�3) 1.532 1.653
Absorption coefficient (mm�1) 1.006 0.784
F (000) 860 334
sin �max=� (Å�1) 0.6383 1.0901
Refinement method Full-matrix

least-squares on F 2
–

Final R indices, R1 0.0474 0.0229
wR2 0.1142 0.0576
Number of reflections 39625 38326



calculated in the usual way and have not been corrected for

the PCE; instead consideration of the PCE in the angular

dependence of atomic scattering factors of the Cu atom is

presented in x4.1. The ADPs were taken from the multipole

refinement of the experimental data. The entire data set was

used in the XC-UHF method. Weak negative intensity

reflections Fj < 0 have been set to zero Fj = 0.0 and the sigma

value was adjusted appropriately, i.e. �j ! �j þ Fj

�� ��. Correc-

tions for secondary extinction were not applied.

3.5. Software

The calculations were performed using a modified version

of TONTO (Jayatilaka & Grimwood, 2000). The new software

is available under a free software licence from http://

sourceforge.net/. The numerical DCH calculation of the

isolated Cu atom was performed using the GRASP (general-

purpose relativistic atomic structure program) software

package (Dyall et al., 1989). SHELX97 (Sheldrick, 2008) was

used for the refinement and solving of the structures. Spin and

electron densities were produced using the XCrysDen

program package (Kokalj, 1999; code available from http://

www.xcrysden.org/).

4. Results and discussion

4.1. Relativistic and picture-change effects in the Cu atom

Since the compounds studied involve the elements copper

and iron, we begin by investigating the relativistic and picture-

change effects on the electron density of the isolated copper

atom.

Fig. 2(a) presents the radial distribution of the Cu atom

electron density at the numerical four-component DCH, the

scalar UDKH2 and the NR level of theory. As is well known

[see Fig. 2(a)], the DCH electron density close to the nucleus is

larger than the NR electron density [although not obvious

from Fig. 2(a), the numerical DCH electron density at the

nucleus tends to infinity, since the point-charge model has

been used in all calculations]. The UDKH2 electron density

close to the nucleus is even larger than the DCH density. Close

to the nucleus, i.e. within 0.0001 Å, the UDKH2 density is

roughly twice as large as the DCH density. This large discre-

pancy between the DCH and UDKH2 density is presumably

caused by the PCE, since the approximation owing to the

termination of the DK expansion to second-order within

UDKH2 has been shown to be negligible (Mastarlez et al.,

2008), compared with the PCE itself. Such a large difference

explains the sensitivity to the PCE of those properties which

are closely related to the electron density at the nucleus.

An important point to note is that the valence region is

rather unaffected by the PCE. The inset of Fig. 2(a) shows that

the relative percentage change between the UDKH2 and the

exact DCH value is less than 1% for distances larger than

0.02 Å. Another important point is that, away from the

nucleus, the PCE is negligible compared with the relative

magnitude of the relativistic effects. Because of this the PCE

in the electron density plots to be presented later will most

likely not be discernible and so the PCE corrections have not

been made.

The PCE in the radial distribution of the integral density

4
r2�ðrÞ is damped by the r2 factor at small r [see Fig. 2(b)].

Hence the UDKH2 4
r2�ðrÞ radial distribution closely follows
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Figure 2
(a) Radial distribution of the Cu atom electron density �ðrÞ at the DCH,
DKH2 and NR level of theory. The inset shows the percentage change in
the electron density. (b) Integral electron density distribution of the
function 4
r2�ðrÞ of the Cu atom, in the range 0.0 to 0.06 Å. The inset
shows the range 0.0 to 0.9 Å. (c) Scattering-angle dependence of the
relative significance of the PCE and relativistic effects in the atomic
scattering factor of the Cu atom comparing the DCH atomic scattering
factors.



the values obtained from the DCH density, and we expect that

the atomic scattering factors should be much less sensitive to

the PCE than the electron density itself.

To test this, Fig. 2(c) shows the change in the atomic scat-

tering factors owing to relativistic effects and PCE versus

sin �=�. It is obvious that the PCE in the atomic scattering

factors is negligible compared with the relativistic effects.

Also, for sin �=� > 0.25 Å�1 the relativistic effects start to

increase monotonically whereas the PCE decreases

comparatively much more slowly on the same scale. For

example, at the value of sin �=� = 2 Å�1 the relative change

due to the relativistic effects is 1.61%, whereas the PCE

influences the atomic scattering factors by only �0.08%. Thus

the PCE on the atomic scattering factor is less sensitive in

numerical value than the electron density itself.

It seems reasonable that the lack of sensitivity to the PCE

in the atomic scattering factors of an isolated atom should also

be valid in calculations of structure factors of a molecular

system containing the atom (presented later).

4.2. Agreement statistics

Table 2 summarizes the results for the agreement statistics

of the studied molecular systems [Fe(salpet)Cl] and [CuL2]. It

is straightforward to see that the relativistic effects on agree-

ment statistics are much less significant than the improvement

owing to the X-ray constraint. For example, the change in the

weighted R factor owing to relativistic effects was between

0.02 and 0.04% for both compounds. These results are

consistent with the localized relativistic effects seen for the

isolated Cu atom. On the other hand, the improvement in the

R factor by the X-ray constraint was 10% and 16% for the

[Fe(salpet)Cl] and [CuL2] compounds, respectively.

The �2 agreement statistics are rather large for the [CuL2]

compound as compared with [Fe(salpet)Cl]. On the other

hand, the R factors for the two compounds are comparable.

The origin of the large �2 value for the [CuL2] compound is

due to several reflections at low angle, as shown in Fig. 3. The

�2 column of Table 2 confirms this. When �2 is calculated from

the 10% of the structure factors with the highest sin �=� value,

denoted �2ð10%Þ, we obtain values of less than 1, i.e. the

calculated and the experimental data agree with each other

within the experimental error.

The relativistic effects in the agreement statistics are small;

however, the inclusion of relativistic effects (without XC)

always lead to an improvement. The XC-UDKH2 model leads

to the best agreement statistics.

While the effect introduced by the X-ray constraint is much

higher than the relativistic effects considering the whole data

set, for �2ð10%Þ the XC and relativistic effects are of

comparable magnitude.

An interesting question is whether the X-ray constraint

includes relativistic effects owing to the use of experimental

structure factors. To test this hypothesis, the differences in �
values are compared. For the [Fe(salpet)Cl] compound the

difference in �ð10%Þ owing to relativistic effects only is 0.010

(i.e. 0:5531=2
� 0:5381=2), whereas the difference in �ð10%Þ

owing to the X-ray constraint is 0.0185. If the X-ray constraint

does not include any relativistic effects, the two effects should

be additive and we would predict that the decrease in �ð10%Þ
for XC-UDKH2 would be 0:0286 (0.0101 + 0.0185). The actual

value has decreased by 0.0260, which is different from the

predicted value by 0.0026. This seems small but it is a 25%

reduction of relativistic effects only; the same analysis for the

[CuL2] compound yields similar conclusions with a value of

24% non-additivity. According to this argument, relativistic

effects should be recovered by the XC calculation.

Fig. 4 shows the effects of relativity analysed in more detail

for the [Fe(salpet)Cl] compound; in these figures all reflec-

tions with Fj < 3�j have been removed. Fig. 4(a) shows that at

larger angles the percentage of relativistic effects increases; at

sin �=� = 0.6 the relativistic effects in structure factors reach up

to 1%. The same holds for the atomic scattering factors (Wang

et al., 1996), which are with the growing value of sin �=� more

related to the electron density of core electrons. Fig. 4(b)

shows that the relativistic effects concern mostly low-intensity

reflections. Interestingly, the relativistic effect is largest in

the range 0.3 < sin �=� < 0.5 when judged as a fraction of

experimental error �j [see Fig. 4(c)]. In this range the relati-

vistic effects are of magnitude�0.2�. Assuming no systematic
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Table 2
Comparison of experimental and calculated structure factors of the
studied complexes at different levels of theory using the following statistic
parameters: R factor, weighted R factor, �2 value and �2(10%) value (the
10% of highest-angle reflections and cleaned for reflections which are
smaller than three times the experimental error).

Model � R(F) wR(F) �2 �2(10%)

[Fe(salpet)Cl]
UHF 0.0 0.0862 0.0455 1.875 0.553
UDKH2 0.0 0.0861 0.0453 1.855 0.538
XC-UHF 0.6 0.0829 0.0406 1.490 0.526
XC-UDKH2 0.6 0.0829 0.0404 1.479 0.515

[CuL2]
UHF 0.0 0.0612 0.0554 24.87 0.998
UDKH2 0.0 0.0603 0.0550 24.54 0.974
XC-UHF 0.4 0.0569 0.0462 17.32 0.971
XC-UDKH2 0.4 0.0565 0.0461 17.23 0.953

Figure 3
Difference of the measured Fj and calculated FX

j structure factors,
weighted by the experimental error �j for [CuL2].



errors and Poisson statistics, a 25 times longer exposure time

would reduce the � values by an amount which would make

these effects clearly discernible.

The ability to see relativistic effects and to test whether the

XC calculation recovers this would be greatly enhanced if

compounds containing heavier elements (i.e. 5d, 6d or

lanthanides) were studied. Likewise the ability to study high-

angle reflections is also desirable; this could be achieved by

using synchrotron radiation at small wavelength or with


-rays.

4.3. Effects of XC and relativity on the total energies of the
studied systems

Besides the effects of relativity and X-ray constraint in

electron and spin densities which are presented in the coming

two sections, some considerations of the extent

of XC and relativistic effects on the total self-

consistent field (SCF) energy of the studied

systems is presented within this section. Table 3

shows the total energies of the studied

compounds at several levels of theory.

From the presented energies in Table 3 it is

straightforward to see that the DKH2 approach

introduces larger changes in the total energy

than the X-ray constraint. In the case of [Fe(salpet)Cl] the

XC-UDKH2 energy is lower than the XC-UHF energy by

10.66 hartree (atomic units, a.u.) and by 14.64 hartree for the

[CuL2] compound. Most sensitive to relativistic effects are

the core electrons which become the most energetically

stabilized (Pyykkö, 1988). For instance, [CuL2] has the lowest

� orbital: the eigenvalue is �332.6059 hartree at the UDKH2

level and �328.9391 hartree at the UHF level (see Table 3).

Although the orbital energies presented in Table 3 were

obtained using non-canonicallized orbitals (Jayatilaka, 1998),

they show a very similar relativistic stabilization whether

with or without the X-ray constraint. This holds for the

[Fe(salpet)Cl] compound as well. The larger stabilization

of the total energy of [CuL2] by relativistic effects is explained

by the larger relativistic effects in the heavier Cu atom

than in the Fe and Cl atoms together. Following the work of
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Table 3
Total SCF energies and the eigenvalue of the lowest � orbital of the studied compounds
(in hartrees); the XC orbitals have not been canonicalized.

Approach UHF XC-UHF UDKH2 XC-UDKH2

[Fe(salpet)Cl] Total energy �2766.6155 �2766.5178 �2777.3703 �2777.2755
[CuL2] Total energy �2577.5000 �2576.6115 �2592.1377 �2591.2754
[Fe(salpet)Cl] Lowest � orbital �261.2221 �261.2776 �263.5236 �263.5753
[CuL2] Lowest � orbital �328.9391 �329.6168 �332.6059 �333.1922

Figure 4
Relativistic effects in the calculated structure factors F X

j of [Fe(salpet)Cl], relative to FX
j (DKH2), plotted versus (a) sin �=� and (b) FX

j (DKH2).
Relativistic effects in the calculated structure factors F X

j of [Fe(salpet)Cl] relative to the experimental error �j, plotted versus (c) sin �=� and (d) FX
j

(DKH2).



Desclaux (1973), the relativistic (DCH-NR) stabilization in

energy for Cu is 13.75 hartree; iron together with chlorine

gives 9.93 hartree. The contribution to the relativistic

stabilization from the C, N and O atoms is two orders of

magnitude smaller compared with iron and copper (Desclaux,

1973). The atomic data (Desclaux, 1973) were obtained from

numerical DCH and NR calculations of separate open-shell

atoms.
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Figure 5
Difference electron density �ðUDKH2Þ � �ðUHFÞ showing relativistic effects in the unconstrained calculations for (a) [Fe(salpet)Cl] and (b) [CuL2].
The difference electron densities are given in atomic units.

Figure 6
Difference electron density �ðXC-UDKH2Þ � �ðXC-UHFÞ, showing relativistic effects after wavefunction fitting; (a) two-dimensional plot for
[Fe(salpet)Cl]; (b) two-dimensional plot for [CuL2]; (c) three-dimensional plot for [Fe(salpet)Cl], the isoline is set to 0.01 a.u.; (d) three-dimensional plot
for [CuL2], the isoline is set to 0.017 a.u. The two-dimensional difference electron densities are given in atomic units.



The energy shift introduced by the X-ray constraint at the

UDKH2 level is only 0.095 hartree in the case of the

[Fe(salpet)Cl] complex, given as the difference of the XC-

UDKH2 and UDKH2 calculation. In the case of the [CuL2]

compound this change due to the constraint at the DKH2 level

is an order of magnitude larger in comparison with [Fe(sal-

pet)Cl], namely 0.862 hartree. This correlates with the high �2

values for the [CuL2] compound and the large absolute change

in the �2 value before and after XC fitting. Following the total

energies in Table 3 the constraint for both compounds intro-

duces only a slightly larger shift in energy at the NR level. The

reason why the XC total energy at XC-UHF and XC-UDKH2

is higher than the usual unconstrained calculations (UDKH2

and UHF) can be explained by considering the following

arguments. The variational approach of the SCF leads to the

minimal energy on the energy hypersurface built of the

molecular coefficients. The wavefunction fitting (XC) intro-

duces an additional experimental constraint, but not a new

variational parameter, so the energy hypersurface does not

change. The molecular coefficients change within the XC

approach, which have a different point on the energy hyper-

surface; the resulting energy becomes higher (smaller in

absolute value). Moreover the XC approach is proposed to

introduce the crystalline environment to a single molecule (in

general a fragment); this approach is denoted as the non-

interacting fragment model in the original work (Jayatilaka &

Grimwood, 2001). Stabilization in the condensed phase from

the interaction between the neighbouring molecules which

build up the crystal is not accounted for in this model.

Nevertheless, the basic motivation of the experimental

constraint is a model electron density and/or wavefunction of

a single molecule which resembles the crystalline environment

mirroring the measured behaviour of the electron density in a

crystal (like electron correlation, for instance) by the agree-

ment with the X-ray structure factors.

4.4. Difference electron densities

Relativistic effects in the obtained unconstrained electron

densities are shown in Figs. 5(a) and 5(b). As expected, the

most important changes are present for the heaviest elements,

Fe and Cu. Figs. 6(a)–6(d) show the relativistic effects in the

constrained electron densities. Comparison of the difference

electron densities in Figs. 5 and 6 shows that the relativistic

effects are essentially the same regardless of the constraint;

moreover, the relativistic effects on Cl can be seen in Fig. 6(c).
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Figure 7
Difference electron densities showing the effects of wavefunction fitting �ðXC-UDKH2Þ � �ðUDKH2Þ; (a) two-dimensional plot for [Fe(salpet)Cl]; (b)
two-dimensional plot for [CuL2]; (c) three-dimensional plot for [Fe(salpet)Cl], the isoline is set to 0.01 a.u.; (d) three-dimensional plot for [CuL2], the
isoline is set to 0.017 a.u. The two-dimensional difference electron densities are given in atomic units (Bohr�3).



Previously we argued that the relativistic effects are

discernible in the changes of � statistics but clearly these

changes are hardly visible to the eye in the presented electron

densities.

Figs. 7(a)–7(d) show that the experimental constraint has a

much bigger effect than relativity. The two-dimensional plots

of difference electron density in Figs. 5(a)–5(b), 6(a)–6(b) and

7(a)–7(b) are of the same scale for each compound; the same

holds for the isovalue of the three-dimensional plots in

Figs. 6(c)–6(d) and 7(c)–7(d). The experimental constraint

introduces significant electron redistribution on all parts of the

studied molecules, see Figs. 7(a)–7(d). Since the relativistic

effects (Figs. 5 and 6) are small and localized presumably on

the central atoms, in the following discussion the effects of the

constraint only for the UDKH2 densities are considered. The

two-dimensional difference electron density plots in Figs. 7(a)–

7(b) show in more detail the effects introduced by the

constraint. Following the colour contours in Figs. 7(a)–7(b) are

changes of electron density in the core region of atoms larger

than in bonding regions. The three-dimensional difference

electron density plots in Figs. 7(c)–7(d) show the regions of the

largest charge density redistribution. Changes in the electron

density on H atoms of the salpet ligand may be seen in

Fig. 7(c). The electron density redistribution on the Cl atom

owing to the constraint [see Fig. 7(c)] is visually the largest

among all atoms of the [Fe(salpet)Cl] compound. The central

iron and chlorine and salpet ligand atoms O(24), N(22) as well

as C(8), C(10)–C(13), C(15) and C(18) undergo a change in

the electron density distribution, seen in Fig. 7(c); the change

for O(23) and N(20) seems of rather minor significance. In the

case of the [CuL2] compound most of the atoms of the ligands

undergo significant charge redistribution owing to the

constraint, Figs. 7(b)–7(d), which holds for H atoms of the four

methyl groups as well.

4.5. Spin density

It is one of the advantages of the XC method that it can

produce derived properties in a very easy way, compared with

the multipole model. The spin density can be taken as a good

example. The X-ray experiment and the multipole model are

not able to obtain spin density from the measured structure

factors. An XC spin density can be obtained as a derived

property of the XC electron density which is related to the

experimental structure factors. Figs. 8(a)–8(d) show the XC-

UDKH2 total spin density plots of the studied compounds.

The spin density at the UHF level, obtained using equation

(8), contains not only regions in space of positive spin density
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Figure 8
Spin density plots �sðXC-UDKH2Þ; (a) two-dimensional plot for [Fe(salpet)Cl]; (b) two-dimensional plot for [CuL2]; (c) three-dimensional plot for
[Fe(salpet)Cl], the isoline is set to 0.025 a.u.; (d) three-dimensional plot for [CuL2], the isoline is set to 0.02 a.u. The two-dimensional difference spin
densities are given in atomic units.



(red, where �� > ��) but also of negative spin density (blue,

where �� < ��). The positive spin density contains the major

contribution from the density of the unpaired (�) electrons,

but is also enlarged by the presence of the negative spin

density which has to be ‘annihilated’ to fulfil equation (13).

The negative spin density is annihilated by means that inte-

gration of the entire spin density of equation (13) has to yield

the number of unpaired electrons which have spin �.

The spin density of the [Fe(salpet)Cl] compound, shown in

Figs. 8(a) and 8(c), is partially delocalized over the backbone

of the salpet ligand. The actual spin of the Fe atom obtained

by the Mulliken population analysis for the XC-UDKH2

calculation is 3.83 rather than the expected 5 electrons of an

isolated Fe(III) atom. The three-dimensional plot of Fig. 8(c)

shows that the major part of the delocalized spin density is

found on the conjugate ring built of the C(1)–C(7), N(20) and

O(23) atoms. The second conjugated ring, built of the C(13)–

C(19), N(22) and O(24) atoms, contains a smaller part of the

delocalized spin density. The sp3-hybridized carbon atoms

C(8)–C(12) contain only a very small amount of spin density.

For instance, in Fig. 8(a) the spin density distribution of carbon

C(8) is visible; on the other hand, the three-dimensional plot

of the spin density in Fig. 8(c) does not show any spin density

on the C(8)–C(12) carbon atoms. The Mulliken population

analysis showed that the sp3-hybridized carbon atoms C(8)–

C(12) contain an order of magnitude lower amount of spin, in

absolute value, compared with carbon atoms of the conjugated

rings. The spin density of the second compound under study,

[CuL2], is shown in Figs. 8(b) and 8(d). Although the spin

density is localized presumably on the central Cu atom, the

spin density is found to be localized also on the atoms of the

two ligands. The Mulliken population analysis yielded a spin of

0.846 on the Cu atom at the XC-UDKH2 level.

The relativistic effects are significant especially in the spin

density around the heavy atoms; Figs. 9(a)–9(d) present the

relativistic effects at the XC level. In the case of the

[Fe(salpet)Cl] compound, in Fig. 9(c) some changes of spin

density by relativistic effects are visible for the lighter atoms

C(7), C(13)–C(19), N(20) and O(23), whereas the two-

dimensional and three-dimensional spin densities of [CuL2] in

Figs. 9(b) and 9(d) do not present any changes at all for the

lighter atoms.

Effects introduced by the constraint in the spin density for

the studied compounds are presented in Figs. 10(a)–10(d).
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Figure 9
Difference spin density �sðXC-UDKH2Þ � �sðXC-UHFÞ, showing relativistic effects after wavefunction fitting; (a) two-dimensional plot for
[Fe(salpet)Cl]; (b) two-dimensional plot for [CuL2]; (c) three-dimensional plot for [Fe(salpet)Cl], the isoline is set to 0.001 a.u.; (d) three-dimensional
plot for [CuL2], the isoline is set to 0.002 a.u. The two-dimensional difference spin densities are given in atomic units.



Compared with relativistic effects the constraint effects are

considerably larger. In the case of [Fe(salpet)Cl] the

constraint affects not only the spin density on the central iron

atom but also appears to damp the spin density on the atoms

C(13)–C(19), N(22) O(24) on one of the conjugated rings. This

explains why the spin density on this ring is smaller in Fig. 8(c)

and implies how sensitive spin density is to crystalline envir-

onment. It has to be noted that the difference spin densities of

[Fe(salpet)Cl] in Figs. 9(c) and 10(c) are plotted with a 20

times smaller isoline value compared with the total spin

density plot in Fig. 8(a). In the case of [CuL2] a similar

damping effect is introduced by the constraint [see Figs. 10(b)

and 10(d)]. The spin density in Figs. 8(b) and 8(d) is less

symmetric than one would expect and this can be explained by

redistribution owing to the crystal environment, which is

introduced by the constraint, in Figs. 10(b) and 10(d).

Although the relativistic and constraint effects are of similar

magnitude on the central atoms of Fe and Cu in the studied

compounds, the spatial redistribution of these effects is

different.

5. Conclusions

We have extended the constrained wavefunction procedure to

deal with open-shell and scalar relativistic effects; both are

necessary for treating heavy systems. Our first study on the

[Fe(salpet)Cl] and [CuL2] compounds has suggested that

relativistic effects can be seen in the �2 value of the high-angle

data, although the effects are small. We have found that the

effect of the crystal environment (i.e. the X-ray constraint) is

typically much larger than the relativistic effects in plots of the

electron and spin density. An important aspect of this work is

the first analysis of spin density at the level of X-ray constraint.

The reliability of the XC-UHF spin density should be proved

by a comparison with spin densities obtained from experi-

mental and constrained polarized neutron data. The polarized

neutron constrained UHF method is within the scope of the

authors. Moreover, the PCE was investigated for the Cu atom

and was found to be highly localized at the nucleus, and was

shown to be small and damped for the atomic scattering

factors.
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Figure 10
Difference spin densities showing the effects of wavefunction fitting �sðXC-UDKH2Þ � �sðUDKH2Þ; (a) two-dimensional plot for [Fe(salpet)Cl]; (b)
two-dimensional plot for [CuL2]; (c) three-dimensional plot for [Fe(salpet)Cl], the isoline is set to 0.001 a.u.; (d) three-dimensional plot for [CuL2], the
isoline is set to 0.002 a.u. The two-dimensional difference electron densities are given in atomic units.



It would be interesting to see whether relativistic effects

could be detected in heavy-atom compounds, where these

effects are larger. A study of compounds containing Ir and Pt

atoms is in the focus of the authors. It is also interesting to

examine the PCE in electron and spin density as well as

structure factors in more detail, especially for heavy-atom

compounds. The rigorous PCE correction of electron densities

and structure factors should become the topic of forthcoming

papers.

In addition, the implementation of the two-component

DKH2 Hamiltonian, within the general complex Hartree–

Fock approach, has been completed. The basic motivation of

the implementation of the two-component approach is the

proper description of the real spin–orbit symmetry, which

governs in the heavy elements. The XC-HF will have to be

extended to cope with the two-component wavefunction to

examine the importance of spin–orbit coupling in heavy-atom

compounds.
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Lelièvre-Berna, E. (1998). J. Am. Chem. Soc. 120, 5238–5245.

Andrews, J. S., Jayatilaka, D., Bone, R. G. A., Handy, N. C. & Amos,
R. D. (1991). Chem. Phys. Lett. 183, 423–431.

Aronica, C., Jeanneau, E., El Moll, H., Luneau, D., Gillon, B.,
Goujon, A., Cousson, A., Carvajal, M. A. & Robert, V. (2007).
Chem. Eur. J. 13, 3666–3674.

Balabanov, N. B. & Peterson, K. A. (2005). J. Chem. Phys. 123,
064107.

Balabanov, N. B. & Peterson, K. A. (2006). J. Chem. Phys. 125,
074110.

Barone, G., Mastalerz, R., Reiher, M. & Lindh, R. (2008). J. Phys.
Chem. A, 112, 1666–1672.

Barysz, M. & Sadlej, A. J. (2001). J. Mol. Struct. THEOCHEM, 573,
181–200.
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Fuess, H. (2009). Eur. J. Inorg. Chem. pp. 3141–3154.

Schwerdtfeger, P. (2002). Editor. Relativistic Electronic Structure
Theory, Part 1. Fundamentals. Amsterdam: Elsevier.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Stevens, E. D. & Coppens, P. (1976). Acta Cryst. A32, 915–917.
Szabo, A. & Ostlund, N. S. (1989). Modern Quantum Chemistry:

Introduction to Advanced Electronic Structure Theory, 1st ed.,
revised. New York: McGraw-Hill.

Wang, J., Smith, V. H., Bunge, C. F. & Jáuregui, R. (1996). Acta Cryst.
A52, 649–658.

Acta Cryst. (2010). A66, 78–92 Martin Hudák et al. � Hartree–Fock and Douglas–Kroll–Hess wavefunctions 91

research papers



Whitten, A. E., Jayatilaka, D. & Spackman, M. A. (2006). J. Chem.
Phys. 125, 174505.

Whitton, A. (2004). Honours thesis, University of Western Australia,
Australia.

Wolf, A. & Reiher, M. (2006a). J. Chem. Phys. 124, 064102.
Wolf, A. & Reiher, M. (2006b). J. Chem. Phys. 124, 064103.
Wolf, A., Reiher, M. & Hess, B. A. (2002a). Relativistic Electronic

Structure Theory, Part 1. Fundamentals, editor P. Schwerdtfeger,
pp. 622–663. Amsterdam: Elsevier.

Wolf, A., Reiher, M. & Hess, B. A. (2002b). J. Chem. Phys. 117, 9215–
9226.

Wolf, A., Reiher, M. & Hess, B. A. (2004). Recent Advances in
Relativistic Molecular Theory, edited by K. Hirao and Y. Ishikawa,
pp. 137–190. Singapore: World Scientific.

Woon, D. E. & Dunning, T. H. Jr (1993). J. Chem. Phys. 98, 1358–
1371.
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